
 

 

  
Abstract— A new phenomenon to obtain the power-law behavior in 
neuronal properties for a threshold based neuron model is proposed. 
Membrane decay constant in leaky integrate-and-fire neuron model is 
considered to be a stochastic process which results a new model, the 
LIFSD neuron model (leaky integrate-and-fire neuron model with 
stochastic membrane decay constant). Two neuronal activities, 
namely, stationary state membrane potential and ISI (inter-spike-
interval) distribution for the LIFSD model is investigated. In order to 
obtain the stationary state membrane potential, Fokker-Planck 
equation (FPE) with reflecting boundary condition, associated with 
LIFSD neuron model is solved which results the power-law behavior. 
ISI distribution depicts the power-law behavior during Monte Carlo 
simulation based study of proposed model. To mathematically 
complete LIFSD model, explicit expressions for membrane potential 
and its first two moments; mean and variance for membrane potential 
are also calculated. 

The LIFSD neuron model is found capable to generate the power 
law behavior for stationary state membrane potential distribution and 
ISI distribution. However a number of other neuronal activities are 
still left to investigate in context of the power law behavior. These 
findings suggest the robustness of proposed model for input-output 
relationship prediction and also prove that the development of the net 
membrane potential and the spiking activity in the single neuron are 
due to the aggregate effort of group of ions and molecules. 

 
Keywords— Fokker Planck Equation, Inter-Spike-Interval 
distribution, Neuron Model, Power Law, Stochastic Differential 
Process, Stochastic Process.  

I. INTRODUCTION 
ower law behavior is the characteristic feature for 
investigating many body systems [16], [25]. An attribute 
X with probability distribution proportional to 
; 1X α α >  is characterized by power-law [10]. It has a wide 

range of application like earth-quake, fragmentation, laser 
cooling, economics, animal behavior, etc. [10], [16]. A number 
of physiological and experimental studies focused on neuronal 
dynamics have suggested emergence of the power law 
behavior at microscopic and macroscopic level such as 
neuronal avalanches [4], inter-spike-interval distribution [6], 
power spectral density for the membrane potential [24], 
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adaption processes in spiking [26], etc. Replication of these 
experimental findings via mathematical model is one of the 
prime issues in theoretical neuroscience. Sharma and 
Karmeshu [33], Karmeshu and Sharma [18] have theoretically 
obtained the power-law behavior for ISI distribution in 
threshold based neurons (LIF model and IF model). Pettersen 
et al [25] has noticed the power law behavior in power spectral 
density for membrane potential distribution. These 
investigations [18], [25], [33] are focused for group behavior 
of neuron and suggest that emergence of the power-law 
behavior in neuronal activities are due to group effect. An 
ensemble of homogeneous and/or heterogeneous neuron 
results the power-law behavior when they “group together and 
fire together” [18]. Generation of the power law behavior in 
neuronal activities for single threshold based neuron model is 
still an unanswered prominent question [5], [25].  

 
Mathematical modeling for single neuron model requires 

focus on computational issues like neuronal activity, neuronal 
dynamics and information processing etc [1], [5], [13], [19]. 
Neuron receives random synaptic input from other neurons and 
from external environment. These inputs generate fluctuation 
in membrane potential and make it capable to process 
information in terms of variable spiking pattern [13], [31]. 
Abbott and Dayan [1] have suggested that membrane 
conductance changes due to generation of an output spike. 
Mears et al [20] has measured coupling strength (conductance) 
among β -cells and noticed that temperature play a crucial 
role in its time dependent behavior. Engel et al [15] has 
investigated time dependent behavior of conductance’s for 
stellate and pyramidal neurons obtained from rat entorhinal 
cortex. Schmid et al [32] has studied conductance fluctuation 
in terms of random gating behavior of ion channels. 
Verechtchaguina et al [37] has modeled conductance 
fluctuation in Resonate-and-fire neuron via Langevin equation. 
On account of factors related to random behavior of ion 
channels, varying concentration of ions and molecules 
(neurotransmitters) inside-outside soma (cell body) and 
membrane temperature fluctuation; membrane conductance 
can be regarded as a fluctuating entity [2], [13], [14], [28], 
[36]. In this article, we investigate neuronal activities of single 
threshold based neuron model with fluctuating membrane 
conductance in terms of power-law behavior. Membrane decay 
constant in LIF neuron model can be assumed to be a 
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stochastic process due to aforementioned reasons which results 
the LIFSD model. 
 

The article is organized into seven sections. After a brief 
introduction in Section I, next Section II deals with 
mathematical formulation of LIFSD neuron model. Stochastic 
evolution of membrane potential in LIFSD model is discussed 
in section III. This section also includes computations related 
to explicit expressions for first two moments of membrane 
potential. Section IV discusses stationary state probability 
distribution of membrane potential which reflects the power 
law behavior in its limiting conditions. Section V deals with 
Monte Carlo simulation based investigation of LIFSD model. 
Here LIFSD neuron model is found capable to generate ISI 
distribution patterns with the power-law behavior. Section VI 
includes detailed discussion regarding assumptions. The last 
section VII gives the conclusion. 

II. STOCHASTIC LIF MODEL 
It is well accepted that a neuron can be represented as an 

equivalent electrical RC -circuit with additional threshold 
constraint. Threshold constraint is associated with spiking time 
of the neuron i.e. when net membrane potential of neuron 
attains a certain value (the threshold), a spike is generated [1], 
[12]. LIF model is the simplest and widely accepted neuron 
model to analytically explain neural dynamics [1], [11], [27], 
[30]. It is a threshold based model where membrane 
conductance is defined in terms of membrane decay constant 
[1], [19]. LIF model with stochastic input stimulus ( )I t  can 
be represented as 

( )dV V I t
dt

β= − +                       (1)  

With initial condition 0( 0)V t V= = . β is membrane decay 

constant. ( )I t  is considered as a sum of mean input stimulus 

( µ ) and Wiener process 1( )tξ  with variance 2
1σ  i.e. 

1( ) 0tξ< = >  and 
2
1

1 1 1 2 1 2( ) ( ) ( )
2

t t t tσξ ξ δ< >= − . 

β  is assumed as a constant entity in entire literature [1], 
[18], [19], [30], [31], [33]. β  can be assumed as a time 
dependent entity due reasons discussed in Section I. we can 
model it as a stochastic process driven Gaussian White noise, 
i.e. 0 2( ) ( )t tβ β ξ= + , where 0β  is mean decay constant 

and 2 ( )tξ is a Wiener process with noise intensity 2σ , 

independent of 1( )tξ  and satisfying 
2
2

2 1 2 2 1 2( ) ( ) ( )
2

t t t tσξ ξ δ< >= − . 

Incorporating time dependent  ( )tβ  into LIF model (Eq. 
1), rate of change of membrane potential results LIFSD neuron 
model which can be represented by following stochastic 
differential equation (SDE) [19] 
 

0 2 1( ( ) ) ( ) ( ) ( ) 0dV V t V t t t
dt

β µ ξ ξ+ − + − =      (2) 

Eq. (2) is in Ito sense, SDE in Stratonovich sense 
corresponding to Eq. 2 becomes  

0 2 1( ( ) ) ( ) ( ) ( )dV V t V t t t
dt

β µ ξ ξ
−

+ − = − +       (3) 

With 
2
2

0 0( )
2

σβ β
−

= + . 

Rate of change of membrane potential defined in Eq. 2 and 
Eq. 3 are SDEs with additive noise as well as multiplicative 
noise both, which make  computation of explicit expression for 

( )V t , an interesting problem [16], [17], [35]. It also provides 
an opportunity to get insight into effects of multiplicative noise 
on membrane potential evolution, spiking activity and other 
related neuronal activities. 

III. STOCHASTIC MEMBRANE POTENTIAL IN THE LIFSD NEURON 
MODEL 

Stratonovich SDE satisfies ordinary calculus and explicit 
expression for membrane potential of LIFSD model defined in 
Eq. (3) is computed below. 

 Integration of Eq. 3 results membrane potential evolution 
process ( )V t   

0 0 2 0
0

2 1 0 2
0 0 0

( ) exp{ ( ) } exp{

( ) }. ( ( )) exp{ ( ) }

t

t t u

V t V t s ds t

s ds u u s ds du

β ξ β

ξ µ ξ β ξ

− −

−

= − − + −

− + +

∫

∫ ∫ ∫
 (4) 

Further simplification of Eq. 4 yields explicit expression for 
( )V t  

0 0 2
0

0 2 2
0 0 0

1 0 2 2
0 0 0

( ) exp{ ( ) }

{exp{ ( ) ( ) ( ) }}

( ){exp{ ( ) ( ) ( ) }

t

t t u

t t u

V t V t s ds

t u s ds s ds du

u t u s ds s ds du

β ξ

µ β ξ ξ

ξ β ξ ξ

−

−

−

= − − +

− − − + +

− − + +

∫

∫ ∫ ∫

∫ ∫ ∫

  

                       (5) 
Time dependent ( )V t  given in Eq. 5 is a stochastic process 

due to the presence of Wiener processes. Thus, coefficient of 
variation becomes an important parameter to study evolution 
dynamics for ( )V t  [19], [34], [35]. Time dependent 
coefficient of variation for ( )V t  can be computed by its first 
two moments [19], [34], [35]. Next subsections III-A and III-B 
deal with computation of explicit expressions for first moment 
and the second moment of V (t), respectively. Computation of 
time dependent coefficient of variation is described in 
subsection III-C. Fig. 1-Fig. 6 are related to stochastic 
evolution of membrane potential. These Figs. are shown at 
their appropriate place. 
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A. Mean Membrane Potential  
Expectation of both sides of Eq. (5) results first moment of 
( )V t  i.e. mean membrane potential ( ( )V t< > ). Since 1( )tξ  

and 2 ( )tξ  are mutually independent Wiener processes, 
expectation of Eq. 5 after some simplification results 

0 0 2
0

0 2 2
0 0 0

( ) exp{ ( ) }

exp{ ( ) ( ) ( ) }

t

t t u

V t V t s ds

t u s ds s ds du

β ξ

µ β ξ ξ

−

−

< >= < − − > +

< − − − + >

∫

∫ ∫ ∫
    (6) 

Following Balakrishnan [3] and Soong [35], further 
simplification of Eq. 6 results explicit expression for mean 
membrane potential 

2 2
2

0 0

2
22

0
0

( ) exp{ ( )}
2

exp{ ( ) ( ) }
2

t

tV t V t

t u t u du

σβ

σµ β

−

−

< >= − + > +

− − + −∫
      (7) 

Fig. 1 depicts evolution of membrane potential for an 
ensemble of neurons (red color line), mean of numerically 
expression of mean membrane potential (blue color line) line. 
An ensemble of 100000are simulated with Monte Carlo 
simulation strategy as stated in SectionV . For the sake of 
simplicity of figure, evolution of membrane potential of only 
50 ensembles is shown (in red color line). Ensembles are 
numerically in sub-threshold regime with 0.7 mV  threshold 
value whereas no threshold is applied in plot of explicit 
expression (blue color line) [12], [11], [33], [34]. This figure 
includes the evolution of stochastic membrane potential for 
initial 10 secm .  

 
Fig. 1 Numerical simulation and plot of analytical result for mean 

membrane potential with parameter values 0 0.1β = , 0.03µ = , 

1 0.01σ =  and 2 0.1σ = . 
 
Here, numerically computed mean and the plot of explicit 

expression exhibit similar evolution dynamics in initial half of 
the time duration but shows some difference in later half time 
interval. This difference is due to threshold value which is 
applied on evolution of ensemble of neurons but not on 
explicit expression and it will monotonically increase. Noise 
terms are also responsible to causes fluctuations in evolution 
of membrane potentials in ensembles whereas analytical result 

monotonically increases. In this way, evolution of the mean 
membrane potentials obtained by numerical simulation and 
analytical expression are in nice agreement.  
 

 
 

Fig. 2 Analytical results for mean membrane potential with 
parameter values 0 0.1β = , 0.03µ = , 1 0.01σ =  and different 

2σ values. 

 
Development of mean membrane potential defined in 

analytical expression Eq. (7), with constant 0β , µ , 1σ  and 

different values of 2σ  is shown in Fig. 2. Here, it is well 

illustrated that for 2 0σ β< , evolution of membrane potential 
is due to applied input stimulus and it increases more rapidly 
as compared with other conditions 2σ  of values. When 

2 0σ β= then behavior of LIFSD model will fluctuate 
between IF neuron model and LIF neuron model. In this case, 
membrane potential will also evolve but with comparatively 
lesser speed, whereas, 2 0σ β> will depicts higher 
fluctuations in evolution membrane potential. 

B. Variance for ( )V t  

Second moment of membrane potential is known as 
variance. It can be computed by applying the standard formula 
as given in Eq. 8. 

 
2 2 2( ) ( ( )) ( ( ) )V t V t V tσ =< > − < >               (8) 

 
Substitution for values of ( )V t  form Eq. 5 and ( )V t< >  

form Eq. 7 into Eq. 8 and further simplification results explicit 
expression for variance of ( )V t as below. 

2
2 2

( ) 2
0

2 2
2 22 2

0
0

exp{ 2 ( ) ( )}02

2 {exp( (2 ) ) exp{ ( 2 )}}
2 2

exp{ (2 )}0

t

V t

t

t u t u du

V t u u ut

t u du

σσ σ

σ σµ

β

β

−

−

= − − + −

+ − − −

− −

∫

∫

                          (9) 
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Fig. 3 Numerical simulation and plot of analytical result for 

variance in membrane potential with parameter 
values 0 0.1β = , 0.03µ = , 1 0.01σ =  and 2 0.1σ =  
 

 
Fig. 4 Analytical results for variance in membrane potential with 

parameter values 0 0.1β = , 0.03µ = , 1 0.01σ =  and different 

2σ values. 
 

Fig. 3 and Fig 4 represent evolution dynamics of variance of 
membrane potential with justifications given sub-section III-A. 
Fig. 3 shows variance development for initial 20 secm  time 
duration and illustrates the matching of analytical expression 
of variance given by Eq. 9 with numerically observed variance 
of ensemble of 100000 neurons. Numerical computation of 
variance is carried with similar parameter values used for 
mean membrane potential in sub-section III-A. Fig. 4 shows 
stochastic evolution of analytically computed variance for 
different values of 2σ  with constant 0β , µ  and 1σ . It is well 
illustrated that the lowest increase in variance is occurring for 
the highest value of 2 0( )σ β> . This behavior in variance is 
due to the reason of stochastic membrane conductance which 
is responsible for more fluctuation in membrane potential 
evolution as compared with 1σ . 

C. Coefficient of Variation for ( )V t  

Coefficient of variation provides a measure of relative 
fluctuation [19], [35]. First two moments (Eq. 7 and Eq. 9) for 
stochastic evolution of ( )V t depict temporal behavior and 
result a time dependent coefficient of variation. The time 
dependent coefficient of variation for ( )V t can be computed 
as given in Eq. 9. 

 
Fig. 5. Numerical simulation and plot of analytical result for 
coefficient of variation of membrane potential with parameter 
values 0 0.1β = , 0.03µ = , 1 0.01σ =  and 2 0.1σ =  

 
2

( )
( ) ( )

V t
V tCV

V t
σ

=
< >

                  (9) 

Temporal evolution of ( )V tCV for parameter values used in 
previous two sub-sections is shown in Fig. 5 and Fig. 6. Fig. 5 
depicts evolution of coefficient of covariance for initial 
20 secm . This Fig. shows nice agreement for ( )V tCV in 
analytical result and simulation based results due to above 
stated reasons.  
 

 
Fig. 6 Analytical results for coefficient of variation with parameter 

values 0 0.1β = , 0.03µ = , 1 0.01σ =  and different 

2σ values. 

Fig. 6 represents ( )V tCV of analytical expression for 
different values of. Both figures have a very small difference 
in their initial development for 2 0.1σ = . This is due to the 
difference in initial value of the membrane potential. For Fig. 
5 0V  is taken as 0:001 mV  whereas 0 mV  in Fig. 6 [33], 
[34]. In Fig. 6, it is well illustrated that the highest value of 

2 0( )σ β>  depicts the lowest relative fluctuation in 
membrane potential. The term related to stochastic 
conductance in LIFSD neuron model is colored noise term, is 
also responsible for a large fluctuation in membrane potential 
development and helps neuron to reach its firing threshold in 
quicker time as compared with LIF neuron model. It is well 
illustrated in Fig. 5 and Fig. 6 that relative fluctuation of 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 12, 2018 

ISSN: 2074-1278 24



 

 

membrane potential reduces as time progresses. This reduction 
in relative fluctuation of membrane potential arises due to 
colored noise term which generates long range dependency in 
LIFSD model. 

IV. STATIONARY STATE MEMBRANE POTENTIAL DISTRIBUTION  
Explicit expression for membrane potential for LIFSD 

neuron model is a stochastic process and coefficient of 
variation for membrane potential is a time dependent entity. 
Thus a natural question arises that what will be the membrane 
potential distribution? To this end, Fokker-Planck equation 
(FPE) has a great importance in investigating evolution 
dynamics and probability distribution of state variables defied 
in terms of SDEs [16]. Solution of a FPE depends on boundary 
conditions. Among a number of boundary conditions, 
reflecting boundary condition associated with sub-threshold 
regime of a neuron (i.e. a combination of parameter values 
where a neuron never emits spike for deterministic input 
stimulus), provides a way to get insight into the spatial 
probability distribution of the membrane potential [7], [8], 
[14]. Let ( , )p V t  be spatial probability distribution of 

( )V t for the LIFSD neuron model defined in Eq. 3, FPE 
corresponding to the LIFSD model takes the form 

2
2 2 2
1 22

1( ) ( )0 2
p V p V p
t V V

µ σ σβ
−∂ ∂ ∂

= − + +
∂ ∂ ∂

   (11) 

With boundary conditions: 0( , | 0) ( )p V t t t tδ= = − ; 

( ,0) ( ,0) 0p V Vp V= =  as V → ∞ . 
 

Probability current flux ( , )J V t  associated with above FPE 
becomes [16] 

2 2 2
1 2

1( , ) ( ) ( )0 2
J V t V p V p

V
µ σ σβ

− ∂
= − + +

∂
   (12) 

Probability current flux associated with a neuron model in 
its sub-threshold regime vanishes at boundaries [14], [30]. 
Following Frank [16], let ( )Sp V  be stationary state 
membrane potential distribution for LIFSD model then Eq. 12 
with reflecting boundary condition (i.e. ( , ) 0J V t = ) results 

2 2 2
1 2

1( ) ( ) 00 2S SV p V p
V

µ σ σβ
− ∂

− + + =
∂

     (13) 

Integration of Eq. (13) yields ( )Sp V   as 

0
2
2

(1 )
2 2 2 1 2
1 2

1 2 1

2( ) ( ) .exp{ tan ( )}S
Vp V K V

β
σ σµσ σ

σ σ σ

−

− +
−= +

                          (14) 
Here K is a normalization constant and can be calculated by 
applying the law of conservation of probabilities [16]. For a 
very small 1σ  as compared 

withV 1 2

1 2 1

2exp{ tan ( )}Vσµ
σ σ σ

− , can be approximated by a 

constant value, similarly, 2 2 2 2 2
1 2 2V Vσ σ σ+ ≈ . Thus, 

stationary state membrane potential distribution ( ( )Sp V ) 
represented by Eq. 14 can be asymptotically written as 

0
2
2

2(1 )

( )Sp V V
β
σ

−

− +

≈                 (15) 

Since 0
2
2

0β
σ

−

> ; stationary state membrane potential 

distribution for LIFSD model has the power law representation 
as ( ) ; 0Sp V V αα α− > . This power law behavior in 
stationary state membrane potential distribution occurs due to 
aggregate effect of current noise and conductance noise terms 
which are white noise and color noise terms, respectively. 
Power spectral density for a SDE with white noise term shows 
delta correlated behavior whereas a SDE having a color noise 
term exhibits exponentially distributed behavior [3], [16]. 
LIFSD neuron model has both kinds of noise terms thus 
depicting the power-law behavior in steady state membrane 
potential distribution which is its actual strength as compared 
with other one dimensional threshold based single neuron 
model. 

V. ISI DISTRIBUTION: SIMULATION BASED STUDY 
ISI distribution provides a measure to quantify temporal 

information encoded by a neuron into variable spiking patterns 
[1], [5], [19], [26]. Investigation of ISI distribution patterns for 
a neuron model requires study of associated first passage time 
(FPT) problem i.e. study of time interval distribution when 
membrane potential of a neuron first time reaches to its 
threshold value [7], [8], [34]. Mathematically, FPT problems 
can be defined as [33] 

 
inf{ 0; (0) , ( ) }th

thT t V V V t V= > < >         (16) 
 
A general solution for FPT problem associated with a 

neuron model is not available [1], [8], [13], [16], [11]. Its 
solution exists only in few special cases, e.g. analytical 
solution of the FPT problem corresponding to the integrate-
and-fire (IF) model results inverse-Gaussian distribution 
whereas LIF has no explicit expression for corresponding FPT 
problem [18], [34]. In general, FPT problem is too complex to 
solve analytically and one has to look towards other 
investigation techniques. In Foregoing analysis, the Monte-
Carlo numerical simulation technique is described to 
investigate ISI distribution pattern for a neuron model. Euler-
Maruyama numerical simulation method is applied to obtain 
approximate solution of FPT problem associated with LIFSD 
neuron model [17]. For this purpose, the time interval [0, ]T  
is divided into subintervals of equal length ( 0) /h t n= −  

as 0 1[ 0, ]t t= , 1t , 2t , 3t , …, 1[ , ]n nt t T− = . Membrane 

potential values are computed at discrete times 1t , 2t , 3t , 
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…, nt by applying following Euler-Maruyama simulation 
strategy. 

0

1 1 2 2

( 1) ( ) ( ( ))

( ( ) ( ) ( ))

V i V i h V i

h dW i dW i V i

µ β

σ σ

−

+ = + −

+ −
          (17) 

 
Here 1( )dW i  and 2 ( )dW i  are mutually independent 

Wiener processes which individually fluctuates with 1σ  

and 2σ noise intensities, respectively. 

 
Fig. 7 ISI distribution on linear scale with parameter 
values 0.1β = , 0.03µ = , 1 0.01σ = and 2 0.05σ =  

 
Fig. 8 ISI distribution on linear scale with parameter 
values 0.1β = , 0.03µ = , 1 0.01σ = and 2 0.15σ =  

 
Parameter values used for simulation studies into this article 

are taken from articles [12], [11], [18], [33], [29]. Articles 
[12], [11], [18], [33] has suggested a fix sub-threshold value 
for 0 0.1β = , 0.3µ =  and 1 0.01σ = and these values are 
treated as a constant in all simulation studies. Article [29] 
suggested a range of conductance noise 2σ as[0.05,0.15] . 
The simulation study is carried out for conductance noise term 
with minimum value ( 0.05), maximum value ( 0.15) and its 
average ( 0.1 ). Two ISI distribution patterns for proposed 
model of our interest are shown in Fig. 7 and Fig. 8. 
Qualitatively both ISI distributions are uni-modal but 
qualitatively they have significant differences. These figures 
are scattered on log-log scale which are shown in Fig. 9 and 
Fig. 10, respectively. Fig. 7 and Fig. 8 illustrate ISI 
distribution for minimum and maximum values of 2σ  with 
other parameter values assumed to be constant. These figures 

suggest that conductance noise plays a crucial role in 
membrane potential evolution in sub-threshold regime. For 
minimum value of 2σ  LIFSD neuron can take approximately 
6000 secm  maximum whereas for the maximum value of 

2σ this time interval is extended up to approximately 
44000 secm . Here it is interesting to note that the decrease in 
spiking activity is with increment in 2σ value. This increase in 
spiking activity is due to long range dependence of membrane 
potential on the colored noise term. 

 
Fig. 9 Scattered ISI distribution on Log-log with parameter values 

0.1β = , 0.03µ = , 1 0.01σ = and 2 0.05σ =  and a straight 

line (in black color) with slope 0.87423− is fitted. 
 

 
Fig. 10 Scattered ISI distribution on Log-log with parameter 
values 0.1β = , 0.03µ = , 1 0.01σ = and 2 0.15σ =  and a 

straight line (in black color)with slope 0.9253− is fitted. 
 
Furthermore, ISI distribution patterns shown in Fig. 9 and Fig. 
10 contain a long tail which motivates to investigate 
occurrence of long-tails in terms of power-law behavior [10], 
[23]. Fig. 9–Fig. 10 are scattered plot on log-log scale for ISI 
distributions shown in Fig. 7 and Fig. 8. A straight line (in 
black color) with negative slope is fitted on the scatted ISI 
distribution (blue dots) in Fig. 9 and Fig. 10 [10], [23]. Fitting 
a straight line in scattered ISI distribution patterns suggest 
about existence of the power-law behavior in its tails. In 
presence of a small input stimulus, ISI distributions for LIFSD 
neuron model depict the power law behavior due to aggregate 
effect of white noise and color noise term. Color noise term is 
also responsible for long range dependence of membrane 
potential which enforces a neuron to fire even in the absence 
of input stimulus. Thus, the LIFSD model is found capable to 
generate ISI distribution patterns with the power law behavior 
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in its long tails. A detailed discussion regarding the power-law 
behavior and assumption behind derivation of LIFSD neuron 
model is given in the next section. 

VI. DISCUSSION 
ISI distribution patterns corresponding to evolution of 

membrane potential in a noisy neuron depict right side skewed 
behavior with heavy tail and provides an interesting problem 
to investigate tail behavior specially in terms of power-law [1], 
[6], [15], [25]. The power-law behavior can exist in entire 
domain or in a sub-domain. A generalized form of the power-
law distribution is given as [23] 

1

2

( ); ( , )

( ) ; [ , ]
( ); ( , )

x x a
p x x x a b

x x b

α

α

β
α

−

∈ −∞
= ∈
 ∈ ∞

            (18) 

Here ( )p x is probability distribution of an attribute for a 

random variable x . 1( )xσ  and 2 ( )xσ  are two other 

functions of x . β  is a normalization constant and ( 0)α >  is 
a constant exponent. Random variable x  has the power-law 
behavior in sub-domain [ , ]a b  and different behaviors in two 
other sub-domains defined in Eq. 18. Computation for 
combination of parameter values ( , , )a b α becomes a 
challenging task in such kind of probability distribution. To 
this end, maximum likelihood technique provides a way to 
examine the power-law behavior and to obtain value of α  
[23]. It maximizes logarithm of probability distribution and 
can be checked with scattered distribution on Log-log scale 
[23]. A straight line can be fitted on scattered distributions. 
Slope of a fitted straight line depicts evolution dynamics [10], 
[23]. Positive slope corresponds to linear increase in attribute 
during evolution of random variable x  whereas negative slope 
depicts the linear decay. 

 
Many neuronal attributes depict power-law behavior as 

discussed in Section I has been replicated in mathematical 
formulation for ensemble of neurons [18], [33]. It is a 
prominent question that “can the single neuron model 
replicates experimental findings for power-law behavior in 
neuronal attributes [25], [26]?” To this end, the proposed 
neuron model is capable to replicate the power-law behavior 
for steady state membrane potential and ISI distribution 
patterns. The neuronal charge in LIFSD model decays very 
slowly in leaner order which leads to emergence of power-law 
behavior in steady state membrane potential distribution. This 
activity enables LIFSD model to process information even in 
the absence of external input stimulus during long time 
duration. Deterministic LIF model is not capable to explain 
sub-threshold dynamics [1], [9], [13]. In order to investigate 
sub-threshold dynamics of a neuron, various researchers have 
expanded ion channel functions in Hodgkin-Huxley model and 
have suggested a reduced two dimensional model as given 
below [9]. 

( )l syn

l

dVC gV g w I t
dt
dw w V
dt

τ

= − − + 

= − +


           (19) 

Here, g  is leak conductance, lg  works as a synaptic 
conductance. Synaptic conductance provides a measure of 
strength contributed by the recovery variable w   in evolution 
of ( )V t . Positive value of lg  suggests negative feedback on 
membrane potential. Such kind of situation occurs during 
inactivation of sodium ion channel, calcium ion channel and 
activation of potassium ion channel. Similarly, activation of 
sodium, calcium ion channels and inactivation of potassium 
ion channel make lg  a negative entity, which represents the 
positive feedback state on membrane potential. Membrane 
decay constant ( β ) for LIF neuron model is an inverse of 
membrane time constant (1/τ ). β  can be also represented in 
terms of leak conductance ( g ) and membrane capacitance 
( C ). These equivalent representations of β  results 
expression: 1/ /g Cβ τ= = . Assumption for g  as a time 
dependent entity with constant C  results β  as a time 
dependent entity. The LIF model can be extended with time 
dependent assumption of g . The LIFSD model is a similar 
extension of LIF model where ( )tβ  is considered as a 
stochastic process driven by Gaussian white noise. The LIFSD 
model becomes integrate-and-fire model for ( ) 0tβ = . In 
deterministic LIF model β  can’t be negative but in extended 

model ( )tβ  is also responsible to play the role of lg  as in 
Eq. 19, thus its value can be negative. The assumption of time 
dependent β  makes the LIFSD model richer than LIF model 
in terms of explaining neuronal dynamics.  

VII. CONCLUSION 
The membrane potential evolution process and spiking 

activity of a neuron massively depend on other neurons and 
external environment which make mathematical modeling and 
prediction of spiking activity a too complex task. The LIFSD 
model is an attempt to incorporate nearly all entities 
responsible for membrane potential fluctuation, in term of 
stochastic membrane decay constant. The novelty of proposed 
model lies in generation of the power-law behavior for certain 
neuronal activities. Sharma and Karmeshu [18], [33] have 
been also computed the power-law behavior for ISI 
distribution but in case of ensemble of neuron, whereas, 
LIFSD neuron model is found capable to exhibit the power 
law for steady state membrane potential distribution and ISI 
distribution patterns, in case of a single neuron activity. LIFSD 
neuron model has certain more features in terms of adapting 
negative values for membrane decay constant as discussed in 
Section VI, which is not possible in LIF or other threshold 
based neuron models. Conductance noise term in LIFSD 
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model create a mechanism responsible for long range 
dependence of membrane potential so that a LIFSD neuron can 
emits a spike even in the absence of input stimulus. In this 
context the proposed model would be helpful to study neuronal 
dynamics in case of sleep and unconsciousness conditions. 
Furthermore, Neuronal information processing mostly deals 
with statistical information processing. In Information theory, 
it is assumed that variable which contains the higher variance 
will contain larger information. As coefficient of variation is a 
ratio of square root of variance and mean of the variable, 
larger value of mean along with the larger value of variance 
contains more information comparatively but reduces value of 
coefficient of variation [21], [22] as shown in Fig. 6. The 
membrane potential of LIFSD model evolves with ( )V tCV  less 
than 1, which is a desirable feature in time-series analysis.  

 
As the power law behavior is a characteristic feature in 

study of many-body problems, LIFSD neuron model can be 
regarded as a fair representative of neuronal information 
processing system into many-body problem framework. 
Furthermore, application of many-body problem on to LIFSD 
model can help to get more insight into information processing 
mechanism of a neuron [10], [16]. 
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